The semi-infinite cohomology of affine Lie algebras
نویسنده
چکیده
We study the semi-infinite or BRST cohomology of affine Lie algebras in detail. This cohomology is relevant in the BRST approach to gauged WZNW models. Our main result is to prove necessary and sufficient conditions on ghost numbers and weights for non-trivial elements in the cohomology. In particular we prove the existence of an infinite sequence of elements in the cohomology for non-zero ghost numbers. This will imply that the BRST approach to topological WZNW model admits many more states than a conventional coset construction. This conclusion also applies to some non-topological models. Our work will also contain results on the structure of Verma modules over affine Lie algebras. In particular, we generalize the results of Verma and Bernstein-Gel’fandGel’fand, for finite dimensional Lie algebras, on the structure and multiplicities of Verma modules. The present work gives the theoretical basis of the explicit construction of the elements in cohomology presented previously. Our analysis proves and makes use of the close relationship between highest weight null-vectors and elements of the cohomology. [email protected]
منابع مشابه
Realization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کامل2 00 0 Semi - Infinite Cohomology and Superconformal Algebras
We describe representations of certain superconformal algebras in the semi-infinite Weil complex related to the loop algebra of a complex finite-dimensional Lie algebra and in the semi-infinite cohomology. We show that in the case where the Lie algebra is endowed with a nondegenerate invariant symmetric bilinear form, the relative semi-infinite cohomology of the loop algebra has a structure, wh...
متن کاملAffine Cohomology Classes for Filiform Lie Algebras
We classify the cohomology spaces H(g,K) for all filiform nilpotent Lie algebras of dimension n ≤ 11 over K and for certain classes of algebras of dimension n ≥ 12. The result is applied to the determination of affine cohomology classes [ω] ∈ H(g,K). We prove the general result that the existence of an affine cohomology class implies an affine structure of canonical type on g, hence a canonical...
متن کاملEquivariant Cohomology of Incidence Hilbert Schemes and Loop Algebras
Let S be the affine plane C together with an appropriate T = C∗ action. Let S be the incidence Hilbert scheme. Parallel to [LQ], we construct an infinite dimensional Lie algebra that acts on the direct sum
متن کاملSemi-infinite Induction and Wakimoto Modules
The purpose of this paper is to suggest the construction and study properties of semi-infinite induction, which relates to semi-infinite cohomology the same way induction relates to homology and coinduction to cohomology. We prove a version of the Shapiro Lemma, showing that the semi-infinite cohomology of a module is isomorphic to that of the semi-infinitely induced module. A practical outcome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997